62 research outputs found

    Synthesis and Characterization of 40 wt % Ce₀.₉Pr₀.₁O₂−δ−60 wt % NdxSr₁₋ₓFe₀.₉Cu₀.₁O₃−δ Dual-Phase Membranes for Efficient Oxygen Separation

    Get PDF
    Dense, H₂- and CO₂-resistant, oxygen-permeable 40 wt % Ce₀.₉Pr₀.₁O₂–δ–60 wt % NdₓSr₁₋ₓFe₀.₉Cu₀.₁O₃−δdual-phase membranes were prepared in a one-pot process. These Nd-containing dual-phase membranes have up to 60% lower material costs than many classically used dual-phase materials. The Ce₀.₉Pr₀.₁O₂−δ–Nd₀.₅Sr₀.₅Fe₀.₉Cu₀.₁O₃−δ sample demonstrates outstanding activity and a regenerative ability in the presence of different atmospheres, especially in a reducing atmosphere and pure CO₂ atmosphere in comparison with all investigated samples. The oxygen permeation fluxes across a Ce₀.₉Pr₀.₁O₂−δ–Nd₀.₅Sr₀.₅Fe₀.₉Cu₀.₁O₃−δ membrane reached up to 1.02 mL min⁻¹ cm⁻² and 0.63 mL min⁻¹ cm⁻² under an air/He and air/CO₂ gradient at T = 1223 K, respectively. In addition, a Ce₀.₉Pr₀.₁O₂–δ–Nd₀.₅Sr₀.₅Fe₀.₉Cu₀.₁O₃–δ membrane (0.65 mm thickness) shows excellent long-term self-healing stability for 125 h. The repeated membrane fabrication delivered oxygen permeation fluxes had a deviation of less than 5%. These results indicate that this highly renewable dual-phase membrane is a potential candidate for long lifetime, high temperature gas separation applications and coupled reaction–separation processes

    Effects of Cr Doping and Water Content on the Crystal Structure Transitions of Ba₂In₂O₅

    Get PDF
    Temperature-dependent crystal structure alterations in the brownmillerite-type material Ba₂In₂O₅ play a fundamental role in its applications: (i) photocatalytic CO₂ conversion; (ii) oxygen transport membranes; and (iii) proton conduction. This is connected to a reversible uptake of up an equimolar amount of water. In this study, in situ X-ray and neutron diffraction were combined with Raman spectroscopy and solid-state nuclear magnetic resonance experiments to unravel the effects of Cr doping and water content on the crystal structure transitions of Ba₂In₂O₅(H₂O)x over a wide temperature range (10 K ≤ T ≤ 1573 K, x < 1). A mixture of isolated and correlated protons was identified, leading to a highly dynamic situation for the protons. Hence, localisation of the protons by diffraction techniques was not possible. Cr doping led to an overall higher degree of disorder and stabilisation of the tetragonal polymorph, even at 10 K. In contrast, a further disordering at high temperatures, leading to a cubic polymorph, was found at 1123 K. Cr doping in Ba₂In₂O₅ resulted in severe structural changes and provides a powerful way to adjust its physical properties to the respective application

    Multi-scale Designed CoxMn3–xO4 Spinels : Smart Pre-Catalysts towards High-Efficiency Pyrolysis-Catalysis Recycling of Waste Plastics

    Get PDF
    Acknowledgements M. W. and A. W. highly acknowledge the funding by the German Federal Ministry of Education and Research (BMBF) within the NexPlas project (project number: 03SF0618B). Y. S. Z is grateful for financial supports provided by the Royal Society of Chemistry Enablement Grant (E21-5819318767) and Royal Society of Chemistry Mobility Grant (M19-2899).Peer reviewedPostprin

    Upcycling Waste Plastics into Multi-Walled Carbon Nanotube Composites via NiCo₂O₄ Catalytic Pyrolysis

    Get PDF
    In this work, multi-walled carbon nanotube composites (MWCNCs) were produced by catalytic pyrolysis of post-consumer plastics with aluminium oxide-supported nickel, cobalt, and their bimetallic (Ni/α–Al₂O₃, Co/α–Al₂O₃, and NiCo/α–Al₂O₃) oxide-based catalysts. The influence of catalyst composition and catalytic reaction temperature on the carbon yield and structure of CNCs were investigated. Different temperatures (800, 900, 950, and 1000°C) and catalyst compositions (Ni, Co, and Ni/Co) were explored to maximize the yield of carbon deposited on the catalyst. The obtained results showed that at the same catalytic temperature (900°C), a Ni/Co bimetallic catalyst exhibited higher carbon yield than the individual monometallic catalysts due to a better cracking capability on carbon-hydrogen bonds. With the increase of temperature, the carbon yield of the Ni/Co bimetallic catalyst increased first and then decreased. At a temperature of 950°C, the Ni/Co bimetallic catalyst achieved its largest carbon yield, which can reach 255 mg g⁻¹ plastic. The growth of CNCs followed a “particle-wire-tube” mechanism for all studied catalysts. This work finds the potential application of complex oxide composite material catalysts for the generation of CNCs in catalytic pyrolysis of wasted plastic

    Site‐selective substitution and resulting magnetism in arc‐melted perovskite ATiO₃₋δ (A = Ca, Sr, Ba)

    Get PDF
    Magnetic properties in perovskite titanates ATiO₃₋δ (A = Ca, Sr, Ba) were investigated before and after arc melting. Crystal structure analysis was conducted by powder synchrotron X‐ray diffraction with Rietveld refinements. Quantitative chemical element analysis was carried out by X‐ray photoelectron spectroscopy. Magnetic measurements were conducted by vibrating sample magnetometer and X‐ray magnetic circular dichroism (XMCD). The magnetic properties are found to be affected by impurities of 3d elements such as Fe, Co, and Ni. Depending on the composition and crystal structure, the occupation of the magnetic ions in perovskite titanates is selectively varied, which is interpreted to be the origin of the different magnetic behaviors in arc‐melted perovskite titanates ATiO₃₋δ (A = Ca, Sr, Ba). In addition, both formation of oxygen vacancies and the reduction of Ti⁴⁺ to Ti³⁺ during arc‐melting also play a role as proven by XMCD. Nevertheless, preferential site occupation of magnetic impurities is dominant in the magnetic properties of arc‐melted perovskite ATiO₃₋δ (A = Ca, Sr, Ba)

    The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics

    Get PDF
    Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering

    Crystal Structure Determination of Li1–xLu5+xW8O32

    No full text

    Crystal Structure Determination of Li1–xHo5+xW8O32

    No full text
    corecore